Photoionization pathways and free electrons in UV-MALDI.
نویسنده
چکیده
The recently developed model for primary and secondary UV-MALDI ion formation (Knochenmuss, R. J. Mass Spectrom. 2002, 37, 867-877. Knochenmuss, R. Anal. Chem. 2003, 75, 2199.) is applied to questions regarding photoionization pathways and electron versus negative ion production. Two-photon ionization of the matrix in direct contact with analyte is possible under some circumstances (Kinsel, G.; Knochenmuss, R.; Setz, P.; Land, C. M.; Goh, S.-K.; Archibong, E. F.; Hardesty, J. H.; Marynik, D. J. Mass Spectrom. 2002, 37, 1131-1140.), and is added to the model. When analyte is present in large mole ratios (such as when matrix suppression is desired), this effect contributes modestly to the ion yield. Generally, matrix exciton pooling remains dominant. The interfacial layer of thin samples on a metal substrate may also be ionizable in a 2-photon process. A mechanism is proposed, and the correspondingly modified model gives excellent agreement with electron emission versus laser intensity data. Capture in, or escape of low-energy electrons from a thick sample (or on a nonmetallic substrate) is also examined. Because the mean free path for MALDI electrons in a solid matrix is on the order of 10 nm, below such depths, any electrons generated are captured to form negative ions. Only a surface layer can emit free electrons. This surface emission effect is also well reproduced by the model, up to a laser intensity limit caused by surface charging. This charging phenomenon is investigated and illustrated by molecular dynamics calculations.
منابع مشابه
Ion formation mechanisms in UV-MALDI.
Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common MALDI variant using ultraviolet laser e...
متن کاملA pr 2 00 3 Electron - Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements . VII . Relativistic calculations for O VI and O VII for UV and X - ray modeling
Aimed at ionization balance and spectral analysis of UV and X-ray sources, we present self-consistent sets of photoionization cross sections, recombination cross sections, and rate coefficients for Li-like O VI and He-like O VII. Relativistic fine structure is considered through the Breit-Pauli R-matrix (BPRM) method in the close coupling approximation, implementing the unified treatment for to...
متن کاملLaser desorption mass spectrometry for microbial DNA analysis.
Recently, we demonstrated that a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) can be used to determine the molecular weight of polymerase chain reaction (PCR) products of intact 16S rRNA regions and to profile their restriction digests. This is the first time that MALDI-TOF MS with ultraviolet (UV) photoionization has been used to analyze a PCR pro...
متن کاملDissociation of the benzene molecule by UV and soft X-rays in circumstellar environment
Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by UV and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule...
متن کاملGenerating hydrated electrons through photoredox catalysis with 9-anthrolate.
Hydrated electrons are among the strongest reductants known. Adding the ascorbate dianion as a sacrificial donor turns the photoionization of 9-anthrolate in water into a catalytic cycle for their in situ production with near-UV light (355 nm). The photoionization step is exclusively biphotonic and occurs via the first excited singlet state of the catalyst. Neither triplet formation nor any pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 76 11 شماره
صفحات -
تاریخ انتشار 2004